
The Ouroboros Pattern
Ada Lovelace & Iang

(southern) Winter 2012

Abstract. We present a protocol testing tool that we call the Ouroboros Pattern. We
believe this to be novel, and worth documenting with all its background logic.
Ouroboros builds upon the benefits of object-oriented network programming and
introduces positive fuzz loopback testing within the network object. When combined,
the result is a much faster and more reliable protocol development scenario than would
otherwise be possible, because low-level errors are knocked out quickly and painlessly.

About the Authors
Ada Lovelace is the psuedonym of ML Nesfield. She is in her
Junior year at UNC-Chapel Hill in the Computer Science
stream, and has spent her (northern) summer on internship
with CAcert for their (southern) winter BirdShack project.
Iang managed the WebFunds team through a decade of hard
cryptographically-secure programming. During this time, the
team developed the ability to rapid-prototype protocols and
know they were secure.
The WebFunds Team invented and evolved that which this
paper christens the Ouroboros pattern, during1995-2002. We
were, at various times: Gary Howland, Mike Wynn, Erwin van
der Koogh, Jeroen van Gelderen, Edwin Woudt and Iang.

The Ouroboros Pattern

(1) Introduction

As an internship project, Ada Lovelace was tasked to develop a protocol for BirdShack -
a classical 3-tier architecture of web servers for user access, middleware server for
business logic and backends for database and certificate signing [BirdShack]. An early
decision was made to use CRUD and Rest for the communications between web
servers and middleware server.

In short, CAcert requires a protocol framework for the middleware that is reliable, secure
and easy to export to different web server languages. This context formed the ideal
environment for exploring and documenting the Ouroboros Pattern - a tiny framework
developed by the WebFunds team over many years in developing secure payment
systems [WebFunds].
 
The Ouroboros Pattern permits a much faster and more reliable protocol development
scenario than would otherwise be possible, because low-level errors are knocked out
quickly and painlessly by a form of object-level loopback testing. We believe the
technique to be novel, and worth documenting with all its background logic. Hence this
paper is a work-product of the internship to finally place Ouroboros in the public view for
critique and use.

Explanatory Notes

The structure of this paper follows that of my (Ada’s) gradual understanding of the
subject matter. As a novice, this will be a bottom-up construction from data streams to
network programming.

This paper is in two parts - the effect of Object Oriented Programming (OOP) on
protocol work, and the Ouroboros pattern as an extension of those techniques. People
familiar with OOP in the networking context may wish to skip directly to the third section.
The approach described herein can be contrasted with many other approaches but
detailed comparisons are beyond scope [Comparison].

We assume cooperating agents sending data back and forth, and the concepts are
equally applicable to client-server, master-slave and peer-2-peer. This paper uses
Java, but the concepts have been readily proven in PHP and Perl, and even in C.

Ada & Iang �2

The Ouroboros Pattern

(2) The OO protocol revolution

Object oriented programming (OOP) has had a dramatic effect on the art of protocol
programming. Where previously code was written in very large and complex
conglomerations of functions, OOP provided a way to break down the complexity into
neat packet-oriented parcels. This section describes why OOP achieves such a
dramatic difference, in part because many programmers outside do not know what they
are missing, and in part because it sets the stage for the Ouroboros pattern.

Streams

OOP provides structure for the placing of each natural element of the protocol traffic into
a class of its own. In each class, Input/Output (IO) methods to read and write data find
themselves naturally alongside each other, facilitating both easy maintenance and easy
alignment of their mutual contract to read/write the object data.

This ordering along the lines of data element composition however led to a strong need
for more powerful IO handles, a gap which Streams filled. The complexity of connecting
IO with many subsidiary elements was simplified by passing an IO handle called a
Stream along to each object that could concentrate on its sole task of handling its own
data.

At the lowest level of composition, bytes need to be output, then input again by a
matching process. In OO programming, this is organized naturally by Streams which
both carry the handle for lower-level IO, and allow increasing sophistication in the
nature of the data worked with, by means of extending, compatible versions.

For example, consider Java’s DataOutputStream. It has methods that will write out the
primitive types: bytes, floats, longs, and Strings. Yet, even these methods write out data
in a format chosen for Java. As protocols typically cannot limit themselves to one
implementation or language choice, we need our own output stream, which can provide
a uniform and canonical layout for a small subset of agreed primitives. It does not
matter how this differs from Java’s formats, what matters is that it belongs to us - we
can export this canonical layer across all our implementations.

Our canonical formats layer is created in classes WireOutputStream and
WireInputStream, names that reflects our focus on transmitting objects over the wire.
WireOutputStream builds on Java’s OutputStream to provide the agreed set of
canonical primitives. In this article we will comment only on two:

✓CompactInt is a series of bytes, each holding 7 bits of the number. In each
byte, the high bit signals whether this is the last byte. Also known as a variable-
length quantity [VLQ].
✓ByteArray is composed of two concatenated elements: a CompactInt, and a
series of bytes, the length of which is described by the former CompactInt.

Ada & Iang �3

The Ouroboros Pattern

Using Wire Streams

Consider a class to implement an assured name. It would handle primitives like this in
psuedocode:

 class Name {
int points; // how assured this name is
String name;

public void wireEncode(WireOutputStream wos) {
 wos.writeCompactInt(points);
 wos.writeByteArray(name.getBytes());

 }
public void wireDecode(WireInputStream wis) {

points = wis.readCompactInt();
name = new String(wis.readByteArray());

}
 }

Each class within any OOP network system will typically include encoding and decoding
methods, which we call wireEncode() and wireDecode() above.

Controlling Semantics
In security coding, it is essential to check all inputs. When applied here, each of our
classes must then check the ranges of each element written. For example, imagine that
our class includes a set of points limited from 0 to 100:

 public void wireDecode(WireInputStream wis)
 {

points = wis.readCompactInt();
if ((points < 0) || (points > 100))

 throw new Exception(“points out of range”);
...

As a result of this security mandate, each class has to control local semantics, and is
thus assumed as a responsibility of the wireDecode.

Once the semantics are absorbed into the class, it turns out that the two primitives for
CompactInt and ByteArray are all the primitives needed; within OOP each class can
simply apply additional semantics to model up any variation to the primitives needed.

Ada & Iang �4

The Ouroboros Pattern

This reduces complexity. In contrast, Java’s DataOutputStream offers integers of 1, 2,
4, and 8 bytes; other formats are no less overwhelmingly helpful. Formats derived from
hardware register sizes have little utility in typical network programming because
packets are pure application data. Instead, one single expansible form of number
accompanied by range-checking replaces all the other forms, which reduces
programmer costs and increases reliability.

In the above psuedo-code, we can also see a further reason why OOP helps protocol
programmers. Input of data is heavily influenced by error conditions, and exceptions
provide a convenient way to deal with deep errors without interrupting the logical thread.

Composition

OOP also gives us the ability to compose our packets like lego blocks. For example,
consider a Member:

 class Member {
int unique; // identifier within system
Name name;
String email;

wireEncode(WireInputStream wis) {
unique = wis.readCompactInt();
name = new Name();
name.wireDecode(wis);
email = new String(wis.readByteArray());

}
wireDecode(WireOutputStream wos) {

wos.writeCompactInt(unique);
email.wireEncode(wos);
wos.writeByteArray(email.getBytes());

}
 }

In the above, the subsidiary object email is as easy to handle as the primitives.

Summary of OOP benefits

The above describes what is now well known -- that writing network code the OOP way
is much easier. Let’s summarize. Firstly, streams give powerful handles that allow us to
build a customized layer of primitives, as well as handling the IO. Secondly, classes
can share and control the definition of the data much more readily, by dint of the

Ada & Iang �5

The Ouroboros Pattern

tightness of the OO concept and thus assist our security goals. Thirdly, classes are
readily composable from others following the same rules. Fourthly, exceptions make
error handling simple.

These benefits make writing network code far more tractable, they translate it from a
black art to an engineering science. In this concept, each class’s exclusive purpose is
to transport its component of data--all methods are auxiliary to this purpose. By
constraining them to this end, in network programming we can construct classes as if
they were lego blocks, and build the protocol upwards and outwards. Indeed, they allow
the programmer to focus on the meaning of the protocol, not the chain of functions and
logic through which bytes travel.

Ada & Iang �6

The Ouroboros Pattern

(3) The Ouroboros Pattern

Before the advent of these ideas, much protocol code and enough of the application
code had to be written before testing could typically begin. Worse, some testing
frameworks worked from grammars and protocol specifications, again adding to the
workload and “completion trap.” Waiting until these components--client, server and
protocol--are built before testing for functioning is neither temporally or cost-wise
beneficial; simple bugs in lower code mean long debugging cycles which result in lost
time better spent on improving the protocol.

To address this we introduce a simple ‘unit test’ that isolates the errors in each class
independently before we begin using it in concert with others in a system. In general
terms, this test is a type of loopback test, a concept more typically found in
communications hardware and the TCP/IP stack loopback device [Loopback]. It utilises
an idea similar to Fuzzing in that the input to the loopback is a random, good object
[Fuzzing].

We call this testing technique the Ouroboros Pattern, after the snake that consumes
itself. Our goal is to test the encode/decode path of each class by generating random
data to run through the encode/decode methods and then consuming it in a test of
equality. To accomplish this, we need two new methods, example() and equals() in each
class.

The example() method generates a legal object of its class type. It instantiates an
object filled with fuzzy or random but valid data; ints are in range, strings follow the
proper format, etc.

 public static Object example() {
 int points = Ex.exampleInt(0, 100);
 int len = Ex.exampleInt(1, 10);
 String name = Ex.exampleString(len);

 ID me = ID.example(); // ID class also has example()
 return new ThisClass(me, name, points);
 }

For primitives, we create example values using a source of random numbers and some
glue code (above, a class Ex). For subsidiary objects, each has its own example(),
hence we can obtain a deep example object with no extra work.

Then, equals() compares objects. Equality is defined in our case by (i) classes being
identical, (ii) immutable data being the same, and therefore (iii) the object successfully
transfers to another time/space. In effect we have created an endogenous contract of
equality that is driven by the goal of transferring the object - an object is correctly
transferred if equals returns true.

Ada & Iang �7

The Ouroboros Pattern

 public boolean equals(java.lang.Object obj)
 {
 if (! (obj instanceof ThisClass))
 return false;
 ThisClass x = (ThisClass) obj;

 if (points != x.points)
 return false;
 if (! name.equals(x.name))
 return false;
 if (! me.equals(x.me))

 return false;
 return true;
 }

With these two methods in addition to encoding and
decoding, we can now describe the full pattern. It is
composed of 4 phases: (1) calling the example() method to
get a random object, (2) calling its encode() method to
generate a network packet, and then (3) feeding that
network packet back into decode() to recover the object.
Finally, (4) comparing the decoded result to the original object with equals().

 public static void ouroborosTest()
 {
 //1. Generate the random object:
 ThisClass original = ThisClass.example();

 //2. Encode the object onto the wire:
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 WireOutputStream wos = new WireOutputStream(baos);
 original.wireEncode(wos);

 //2.b “send” and “receive” the packet:
 byte[] p = baos.toByteArray();

 //3. Decode the object from the wire:

Ada & Iang �8

The Ouroboros Pattern

 ByteArrayInputStream bais = new ByteArrayInputStream(p);
 WireInputStream wis = new WireInputStream(bais);
 ThisClass recovered = new ThisClass();
 recovered.wireDecode(wis);

 //4. Check equality between original and recovered:
 assert (original.equals(recovered));
 }

When the wire/en/de coding is working correctly, the object will pass over our virtual
wire and fulfill our definition of equality. However, utility is not realized without repetition
- a test harness runs each cycle many times.

for (int i = 0; i< 1000; i++) {
ThisClass.test();

}
// We further abstracted this into a general
// testing harness employing Java’s reflection
// to access example() on each class.

This pattern is inductive in its behavior: the contract of equality is ensured through
repetition rather than deductive reasoning--a test rather than a proof.

Equality. Let us diverge into the slightly conceptual quandary of what constitutes
equality in the domain of objects, noting that languages such as Java leave the
definition of equals() to the programmer. If an object is a collection of data and
methods, then it can be argued that one object is equal to another when they both have
the same immutable data and answer to the same calls, as seen by the caller. This
definition satisfies our needs within the context of network programing: it tests for the
correct transport of data.

Our endogenous contract of equality turns on several points: (i) the obligation of
wireEncode() to encode its data set, (ii) the matching obligation of wireDecode() to
recover that data, and (iii) the equals() method’s ability to check exactly that which is
pertinent.

Testing Efficacy. This cycle allows us to check the input and output methods, how the
exceptions are being handled, and ensure that the wire class is working well overall. As
the major purpose of the class is to transport its data, this test cycle covers all or most
of the testing needs of such classes.

Building on the basis of transporting data gives us a strong bottom-up design which is
mirrored into our testing strategy. Every time we run ouroboros on a high level class,
every component below is retested. This prevents coming back to your early code 18

Ada & Iang �9

The Ouroboros Pattern

months later, only to discover bugs that you never squashed; Ouroboros ensures deep-
testing while programmers think high level.

Implementations Testing. We can expand the pattern to the context of testing
compatible implementations or servers. Between a pair of cooperating agents: one end
will use the wireEncode() to ‘send’ a piece of data across the wire. The receiving end
uses wireDecode() to collect and then reconstruct the datum at the other end. It
immediately encodes it back onto the wire and sends it back to the sender
which decodes and checks for equality. 

Ada & Iang �10

The Ouroboros Pattern

(4) Conclusion

The goal of network programming is to reliably transport information. The OOP
perspective is to reliably transmit an object. Techniques of class-level encoding and
decoding have developed over time to enable an object to in effect help itself be
transported.

This strategy of endogenous containment --a class laying out its data to a stream and
also recovering that data stream--should be seen as a dramatic contrast to pre-OOP
methods. Vertical stacks of functions struggling to make sense of the flow of data, with
no real attention to natural composition found within, are replaced with an elegantly self-
contained and recursive tree of classes that nicely track and reinforce the data's natural
structure. We use the composition, streaming and other benefits of OOP to make the
class sovereign in its territory.

Our novel feature is to expand on OOP’s bounty to add convenient, appropriate and
manageable testing. By adding an example() and equals() method to all classes, and
wrapping these methods into a loopback cycle of example -> encode -> decode ->
equals, we close the loop on testing: creating, transmitting, recovering and testing-for-
equality over thousands or millions of random samples gives great comfort that the
basics are working.

As this exactly mirrors the primary goal of the network object, our testing job is done.

Better, the method is self-enforcing through unexpected side-effects: programmers find
it easier to build the extra two methods at development time than deal with bugs later
on. The test is as efficacious for the individual class author as it is for the project
builder. Indeed, because of composition, an Ouroboros test of a high level, large object
will automatically test all of its component objects, down to the smallest ones. In this
way, Ouroboros scales and aligns with maintenance cycles and team boundaries - we
naturally get more and deeper testing the more sophisticated the data layout becomes.
It easily leaps across boundaries such as languages and implementations. The
supporting code is quite minimal, making porting predictable and mechanical.

All these benefits lead to comfort on the part of the programmer. Within the framework,
it is possible to rapidly prototype new protocol conversations, and get them right in the
first instance. This frees the coder from the mundane bit-bashing, and leaves him and
her thinking of the conversation. What is the right thing to say, when saying anything is
easy?

Future work. Ouroboros does save time in the end, but how much? This could be
quantified by some form of controlled comparison. Ouroboros also contrasts with
techniques like Fuzzing, and an easy extension is to use the latter’s malicious injection
technique. Is it worthwhile to add a method called mutate() that fuzzes with example()
and inject that many times? A last benefit is that because it is so tight in its cycle, it is

Ada & Iang �11

The Ouroboros Pattern

even helpful if one is not incredibly proficient at programing. Can Ouroboros find a
place in a pedagogical environment? 

Ada & Iang �12

The Ouroboros Pattern

ENDNOTES

References.

Ref Citation Comment

BirdShack CAcert Community, BirdShack project
http://svn.cacert.org/CAcert/Software/
BirdShack/index_dev.html

classical 3-tier server
architecture for a
Certification Authority

Comparison Wikipedia, “Comparison of data
serialization formats,”
http://en.wikipedia.org/wiki/
Comparison_of_data_serialization_formats

describes, compares and
references 20 or so
popular frameworks for
data layout

CRUD Wikipedia, “Create, read, update and
delete,”
http://en.wikipedia.org/wiki/
Create,_read,_update_and_delete

framework for storing and
accessing elements of
data over the net in
client-server architecture

Fuzzing Takanen, Demott, Miller, Fuzzing for
Software Security Testing and Quality
Assurance, ISBN 13: 978-1-59693-214-2
http://rogunix.com/docs/
Reversing&Exploiting/Fuzzing.pdf

black-box testing to inject
bad input with little
knowledge of the
internals (paraphrased,
pp26)

Loopback Wikipedia, “Loopback”
http://en.wikipedia.org/wiki/Loopback

routing data or signals
from origin directly back
to source for comparison
testing

REST Roy Fielding, “Representational State
Transfer (REST),” doctoral dissertation -
chapter 5, University of California, Irvine,
2000.
http://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm

an abstraction of the
architectural elements
within a distributed
hypermedia system

VLQ Wikipedia, “Variable-length quantity,”
https://en.wikipedia.org/wiki/Variable-
length_quantity

A byte layout for a base
128 positive integer, high
bit causes continuation

WebFunds Systemics Inc, WebFunds project,
http://www.webfunds.org/

a secure Internet
payment system

Ada & Iang �13

http://svn.cacert.org/CAcert/Software/BirdShack/index_dev.html
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://rogunix.com/docs/Reversing&Exploiting/Fuzzing.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://en.wikipedia.org/wiki/Variable-length_quantity
http://www.webfunds.org

The Ouroboros Pattern

Layouts. Other data layouts suffer from the same inappropriate focus as Java - several
formats where only one would serve the application programmer. For specific example,
only one natural number format is generally required (we do not typically need
negatives or floats). This is primarily a historical artifact; other layouts prefer time-
honoured abstractions from hardware over newer information-friendly abstractions
possible in OOP.

Types. As well as a set of canonical primitives, the WireOutputStream adds methods to
write out typed versions of these primitives, which are simply the primitive prefixed by a
fixed number (as a CompactInt of course). For example, a typed ByteArray is a series
of three elements: type, length, bytes. This is similar to the tag-length-value tuple (TLV)
found in other protocols.

wireEncode(WireInputStream wis) {
...
name = (Name) wis.readFactory(Types.WIRE_NAME);
...

}

wireDecode(WireOutputStream wos) {
...
wos.writeTypedObject(Types.WIRE_NAME, name);
...

}

In our Wire layout, the type is optional. More specifically, the use of a type is under the
control of each class, which allows it some flexibility in how it lays out its constituent
members. For example, in a factory approach, readers can handle a wide range of
inputs.

Fuzzing. Example() generates an object similar to generation-based fuzzing; however,
their approaches are fundamentally different. Fuzzing aims to send bad data into the
system, in order to crash it -- and thus harden its response against illegal input
[Fuzzing]. Fuzzing as a technique is typically external to the system being tested, even
ignorant of it. Ouroboros uses good data to prove it can handle legal cases, and its
methods are integral, down to the smallest class level, and is fully aware of the protocol.
While both example() and generation-based fuzzing use random data to test a system,
Ouroboros shows that good data is positively handled, while fuzzing proves that bad
data is rejected. Fuzzing intends to crash a system through stress and injected errors,
while example() aims to show reliability under non-byzantine conditions.

Ouroboros could easily be extended to do fuzzing: a method fuzz() or perhaps mutate()
could take an object (from example()) and adjust its data out of legal bounds. This
could then be cycled through the three later phases to prove the code’s efficacy at

Ada & Iang �14

The Ouroboros Pattern

rejection. We have not done this, although slavish attention to our security context
would suggest we should.

Cost. Ouroboros requires the addition of 2 methods to every network packet class.
This is about as much work as the encode and decode; therefore the additional work at
the class level is minimal and bounded. The supporting code includes: Wire streaming,
a test harness, random primitives and deep equals methods, amounting to around 2000
lines of code.

Frameworks. It has often been the goal to simplify the black arts into objective, defined
and hopefully simple frameworks, and network programming rises to that challenge.
Typically the approach is to create strong and comprehensive definitions at various
levels, as typified by ASN.1 (binary layouts), XML (human readable layouts), and
Google’s Protocol Buffers (layouts in code), and to build big framework tools to
implement these definitions.

However, each of these popular approaches has resulted in large and overwhelming
systems, which in the end undermine the original goal. The success of an abstraction is
often determined by whether the result is simpler than the original, and few of these
frameworks meet the incisive test of Einstein’s razor: everything should be as simple as
possible, but no simpler. E.g., they typically impose the programmer burden of, in
effect, learning another language, and include large packages of non-trivial, specialized
code. Instead, direct networking with OOP as described here places the line of
abstraction inside the existing OO classes; we get more value from less abstraction.

Goals; Similarities with Java.

Although the ouroboros pattern gives a language independent platform, Java shaped
the character of our project. This section deals with some of the Java specific effects on
our pattern, as well as language based choices we made along the way.

Java’s toString() method. Another serendipitous or secondary addition from Java is
toString() method. This is also a required and default method, but it comes to shine in
debugging of packets.

Java’s serialization suffers from several shortcomes: language-dependence, version
dependence, and no control over the data at the byte level. We choose to use our own
encode/decode methods and over others such as Java serialization primarily because it
provides greater security.

The Ouroboros cycle was developed during the coding of an extensive, secure payment
system for which Java was predominantly used. This was during the 1990‘s and early
2000s, in which times Java was less developed. Combined with a sense of critical
analysis, this led to a ban on Serialization: the obvious Java alternative to the ouroboros
cycle. While taking advantage of a language’s particular mode of communicating

Ada & Iang �15

The Ouroboros Pattern

objects across networks seems logical on the surface, there are several inherent
drawbacks to serialization for our project context.
 Firstly, serialization is language dependent, it destroys our ability to have a server
and client written in different languages, and therefore inextricably locates us into Java.
It doesn’t stop there. Serialization is version dependent, so we could be looking at
potential incompatibility nightmares when e.g., someone slips in a new version of Java.
(Although not developed in this article, the techniques described herein are also used
without change for object database storage.)
 For projects that deal with sensitive information, security is a top concern. We
want absolute control of what exactly was sent across the wire. This omnipotence in
information control is better achieved through Ouroboros, in which we are required to
stipulate exactly what the immutable data is, and write it out to be sent. The fact that
we’re building the code from the bottom up, instead of borrowing someone else’s (and
assuming it is secure) gives us an added layer of security where we need it: at the very
bottom.
 References based on locations in memory are lost from machine to machine
(whether virtual or physical), and the ensuing confusion is not advantageous for network
programming, in which our very goal is to transfer unchanging references. The direct
OOP techniques do not solve this, rather they force the programmer to deal directly with
the issue by not hiding it -- some method of transportable references is required.
 Finally, serialization has inherent difficulty dealing with deep copies, and it is
better to force the programmer to deal directly with that choice.

Java’s hashcode() method. One of our most elusive bugs stemmed from the
interrelation of contracts between hashcode() and equals(). In short, objects that are
equal should return hashcodes that are equal, and if this is not followed, certain of the
Collections classes will behave erratically. For this reason, (in java) when we override
Object’s equals() we are required to also override hashcode().

Luckily we can code this relatively easily for the general case, and tuck it into an
abstract class:

 public int hashCode()
 {

ByteArrayOutputStream baos = new ByteArrayOutputStream();
WireOutputStream wos = new WireOutputStream(baos);
try {

this.wireEncode(wos);
} catch (IOException iox) {

throw new Error("IOEx in wireEncode???: " + iox);
}
byte[] p = baos.toByteArray();

Ada & Iang �16

The Ouroboros Pattern

ByteArrayInputStream bais= new ByteArrayInputStream(p);
CRC32 crc32obj = new CRC32();
return (int) crc32obj.getValue();

 }

RULES, and similar

1. The primary goal of an object is to transport itself.
2. Each class describes a component.
3. Each object is immutable.
4. Each class has a method encode() to stream its object out, and a method decode()

to stream itself in. (The name is not important, these methods are variously called
marshalling, decoding, streaming, outputting in other approaches.)

5. Rose’s network security principle applies: we are precise about what we send out
and we are precise about what we accept in. (With a nod to Rose [RFC3117], we
note that this is in contrast to Postel’s robustness principle [RFC1122].)

6. Therefore, decode() must check entirely and fully for presence, legality and sanity of
input. Exceptions are thrown, object is not returned.

7. Likewise, constructors should blocks illegal objects from existence, and encode
should decline to output a bad object.

8. Equality of the object means that the object & data that should be transmitted has
been transmitted. Each class has an equals() method that implements this definition.

9. Each class has an example() that returns an object stuffed with random but legal and
sane data.

10. Each class has a toString() method that presents the object’s debugging summary.

Ada & Iang �17

