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Abstract.  We present a protocol testing tool that we call the Ouroboros Pattern.  We 
believe this to be novel, and worth documenting with all its background logic.  
Ouroboros builds upon the benefits of object-oriented network programming and 
introduces positive fuzz loopback testing within the network object.  When combined, 
the result is a much faster and more reliable protocol development scenario than would 
otherwise be possible, because low-level errors are knocked out quickly and painlessly.
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(1) Introduction

As an internship project, Ada Lovelace was tasked to develop a protocol for BirdShack - 
a classical 3-tier architecture of web servers for user access, middleware server for 
business logic and backends for database and certificate signing [BirdShack].  An early 
decision was made to use CRUD and Rest for the communications between web 
servers and middleware server.

In short, CAcert requires a protocol framework for the middleware that is reliable, secure 
and easy to export to different web server languages. This context formed the ideal 
environment for exploring and documenting the Ouroboros Pattern - a tiny framework 
developed by the WebFunds team over many years in developing secure payment 
systems [WebFunds].
 
The Ouroboros Pattern permits a much faster and more reliable protocol development 
scenario than would otherwise be possible, because low-level errors are knocked out 
quickly and painlessly by a form of object-level loopback testing.  We believe the 
technique to be novel, and worth documenting with all its background logic.  Hence this 
paper is a work-product of the internship to finally place Ouroboros in the public view for 
critique and use.

Explanatory Notes

The structure of this paper follows that of my (Ada’s) gradual understanding of the 
subject matter. As a novice, this will be a bottom-up construction from data streams to 
network programming.

This paper is in two parts - the effect of Object Oriented Programming (OOP) on 
protocol work, and the Ouroboros pattern as an extension of those techniques.  People 
familiar with OOP in the networking context may wish to skip directly to the third section.  
The approach described herein can be contrasted with many other approaches but 
detailed comparisons are beyond scope [Comparison].

We assume cooperating agents sending data back and forth, and the concepts are 
equally applicable to client-server, master-slave and peer-2-peer.  This paper uses 
Java, but the concepts have been readily proven in PHP and Perl, and even in C.
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(2)  The OO protocol revolution

Object oriented programming (OOP) has had a dramatic effect on the art of protocol 
programming.  Where previously code was written in very large and complex 
conglomerations of functions, OOP provided a way to break down the complexity into 
neat packet-oriented parcels.  This section describes why OOP achieves such a 
dramatic difference, in part because many programmers outside do not know what they 
are missing, and in part because it sets the stage for the Ouroboros pattern.

Streams

OOP provides structure for the placing of each natural element of the protocol traffic into 
a class of its own.  In each class, Input/Output (IO) methods to read and write data find 
themselves naturally alongside each other, facilitating both easy maintenance and easy 
alignment of their mutual contract to read/write the object data.

This ordering along the lines of data element composition however led to a strong need 
for more powerful IO handles, a gap which Streams filled. The complexity of connecting 
IO with many subsidiary elements was simplified by passing an IO handle called a 
Stream along to each object that could concentrate on its sole task of handling its own 
data.

At the lowest level of composition, bytes need to be output, then input again by a 
matching process.  In OO programming, this is organized naturally by Streams which 
both carry the handle for lower-level IO, and allow increasing sophistication in the 
nature of the data worked with, by means of extending, compatible versions.

For example, consider Java’s DataOutputStream.  It has methods that will write out the 
primitive types:  bytes, floats, longs, and Strings. Yet, even these methods write out data 
in a format chosen for Java.  As protocols typically cannot limit themselves to one 
implementation or language choice, we need our own output stream, which can provide 
a uniform and canonical layout for a small subset of agreed primitives. It does not 
matter how this differs from Java’s formats, what matters is that it belongs to us - we 
can export this canonical layer across all our implementations.

Our canonical formats layer is created in classes WireOutputStream and 
WireInputStream, names that reflects our focus on transmitting objects over the wire. 
WireOutputStream builds on Java’s OutputStream to provide the agreed set of 
canonical primitives.  In this article we will comment only on two:

✓CompactInt is a series of bytes, each holding 7 bits of the number.  In each 
byte, the high bit signals whether this is the last byte.  Also known as a variable-
length quantity [VLQ].
✓ByteArray is composed of two concatenated elements: a CompactInt, and a 
series of bytes, the length of which is described by the former CompactInt.
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Using Wire Streams

Consider a class to implement an assured name.  It would handle primitives like this in 
psuedocode:

    class Name {
int points;       // how assured this name is
String name;

public void wireEncode(WireOutputStream wos)     {
     wos.writeCompactInt( points );
   wos.writeByteArray( name.getBytes() );

   }
public void wireDecode(WireInputStream wis)   {

points = wis.readCompactInt();
name = new String( wis.readByteArray() );

}
    }

Each class within any OOP network system will typically include encoding and decoding 
methods, which we call wireEncode() and wireDecode() above.

Controlling Semantics
In security coding, it is essential to check all inputs.  When applied here, each of our 
classes must then check the ranges of each element written.  For example, imagine that 
our class includes a set of points limited from 0 to 100:

   public void wireDecode(WireInputStream wis)
   {

points = wis.readCompactInt();
if ( (points < 0) || (points > 100) )

       throw new Exception(“points out of range”);
...

As a result of this security mandate, each class has to control local semantics, and is 
thus assumed as a responsibility of the wireDecode.

Once the semantics are absorbed into the class, it turns out that the two primitives for 
CompactInt and ByteArray are all the primitives needed; within OOP each class can 
simply apply additional semantics to model up any variation to the primitives needed.
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This reduces complexity.  In contrast, Java’s DataOutputStream offers integers of 1, 2, 
4, and 8 bytes;  other formats are no less overwhelmingly helpful. Formats derived from 
hardware register sizes have little utility in typical network programming because 
packets are pure application data.  Instead, one single expansible form of number 
accompanied by range-checking replaces all the other forms, which reduces 
programmer costs and increases reliability.

In the above psuedo-code, we can also see a further reason why OOP helps protocol 
programmers.  Input of data is heavily influenced by error conditions, and exceptions 
provide a convenient way to deal with deep errors without interrupting the logical thread.

Composition

OOP also gives us the ability to compose our packets like lego blocks.  For example, 
consider a Member:

    class Member {
int unique;       // identifier within system
Name name;
String email;

wireEncode(WireInputStream wis) {
unique = wis.readCompactInt();
name = new Name();
name.wireDecode(wis);
email = new String( wis.readByteArray() );

}
wireDecode(WireOutputStream wos) {

wos.writeCompactInt(unique);
email.wireEncode(wos);
wos.writeByteArray( email.getBytes() );

}
    }

In the above, the subsidiary object email is as easy to handle as the primitives.

Summary of OOP benefits

The above describes what is now well known -- that writing network code the OOP way 
is much easier.  Let’s summarize.  Firstly, streams give powerful handles that allow us to 
build a customized layer of primitives, as well as handling the IO.  Secondly, classes 
can share and control the definition of the data much more readily, by dint of the 
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tightness of the OO concept and thus assist our security goals.  Thirdly, classes are 
readily composable from others following the same rules. Fourthly, exceptions make 
error handling simple.

These benefits make writing network code far more tractable, they translate it from a 
black art to an engineering science.  In this concept, each class’s exclusive purpose is 
to transport its component of data--all methods are auxiliary to this purpose.  By 
constraining them to this end, in network programming we can construct classes as if 
they were lego blocks, and build the protocol upwards and outwards.  Indeed, they allow 
the programmer to focus on the meaning of the protocol, not the chain of functions and 
logic through which bytes travel.
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(3) The Ouroboros Pattern 

Before the advent of these ideas, much protocol code and enough of the application 
code had to be written before testing could typically begin. Worse, some testing 
frameworks worked from grammars and protocol specifications, again adding to the 
workload and “completion trap.”  Waiting until these components--client, server and 
protocol--are built before testing for functioning is neither temporally or cost-wise 
beneficial; simple bugs in lower code mean long debugging cycles which result in lost 
time better spent on improving the protocol. 

To address this we introduce a simple ‘unit test’ that isolates the errors in each class 
independently before we begin using it in concert with others in a system. In general 
terms, this test is a type of loopback test, a concept more typically found in 
communications hardware and the TCP/IP stack loopback device [Loopback].  It utilises 
an idea similar to Fuzzing in that the input to the loopback is a random, good object 
[Fuzzing]. 

We call this testing technique the Ouroboros Pattern, after the snake that consumes 
itself.  Our goal is to test the encode/decode path of each class by generating random 
data to run through the encode/decode methods and then consuming it in a test of 
equality. To accomplish this, we need two new methods, example() and equals() in each 
class. 

The example() method generates a legal object of its class type. It instantiates an 
object filled with fuzzy or random but valid data; ints are in range, strings follow the 
proper format, etc. 

    public static Object example()     {
           int points = Ex.exampleInt(0, 100);
           int len = Ex.exampleInt(1, 10);
           String name = Ex.exampleString(len);

           ID me = ID.example();  // ID class also has example()
           return new ThisClass(me, name, points);
    }

For primitives, we create example values using a source of random numbers and some 
glue code (above, a class Ex). For subsidiary objects, each has its own example(), 
hence we can obtain a deep example object with no extra work. 

Then, equals() compares objects.  Equality is defined in our case by (i) classes being 
identical, (ii) immutable data being the same, and therefore (iii) the object successfully 
transfers to another time/space.  In effect we have created an endogenous contract of 
equality that is driven by the goal of transferring the object - an object is correctly 
transferred if equals returns true. 
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    public boolean equals(java.lang.Object obj)
    {      
       if ( ! (obj instanceof ThisClass))                      
           return false;
       ThisClass x = (ThisClass) obj;
 
       if ( points != x.points)                                  
           return false;
       if ( ! name.equals(x.name))                     
           return false;
       if ( ! me.equals(x.me))              
                    
           return false;
       return true; 
    }

With these two methods in addition to encoding and 
decoding, we can now describe the full pattern. It is 
composed of 4 phases: (1) calling the example() method to 
get a random object, (2) calling its encode() method to 
generate a network packet, and then (3) feeding that 
network packet back into decode() to recover the object.  
Finally, (4) comparing the decoded result to the original object with equals(). 

  public static void ouroborosTest()
  {
    //1. Generate the random object:
    ThisClass original = ThisClass.example();

    //2. Encode the object onto the wire: 
    ByteArrayOutputStream baos = new ByteArrayOutputStream();
    WireOutputStream wos = new WireOutputStream(baos);
    original.wireEncode(wos);

    //2.b “send” and “receive” the packet:
    byte[] p = baos.toByteArray();

    //3. Decode the object from the wire:
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    ByteArrayInputStream bais = new ByteArrayInputStream(p);
    WireInputStream wis = new WireInputStream( bais);
    ThisClass recovered = new ThisClass();
    recovered.wireDecode(wis);

    //4. Check equality between original and recovered:
    assert (original.equals(recovered));
  }

When the wire/en/de coding is working correctly, the object will pass over our virtual 
wire and fulfill our definition of equality.  However, utility is not realized without repetition 
- a test harness runs each cycle many times. 

for (int i = 0; i< 1000; i++) {
ThisClass.test();

}
// We further abstracted this into a general
// testing harness employing Java’s reflection
// to access example() on each class.

This pattern is inductive in its behavior: the contract of equality is ensured through 
repetition rather than deductive reasoning--a test rather than a proof. 

Equality. Let us diverge into the slightly conceptual quandary of what constitutes 
equality in the domain of objects, noting that languages such as Java leave the 
definition of equals() to the programmer.  If an object is a collection of data and 
methods, then it can be argued that one object is equal to another when they both have 
the same immutable data and answer to the same calls, as seen by the caller. This 
definition satisfies our needs within the context of network programing: it tests for the 
correct transport of data. 

Our endogenous contract of equality turns on several points: (i) the obligation of 
wireEncode() to encode its data set, (ii) the matching obligation of wireDecode() to 
recover that data, and (iii) the equals() method’s ability to check exactly that which is 
pertinent. 

Testing Efficacy.  This cycle allows us to check the input and output methods, how the 
exceptions are being handled, and ensure that the wire class is working well overall.  As 
the major purpose of the class is to transport its data, this test cycle covers all or most 
of the testing needs of such classes. 

Building on the basis of transporting data gives us a strong bottom-up design which is 
mirrored into our testing strategy. Every time we run ouroboros on a high level class, 
every component below is retested. This prevents coming back to your early code 18 
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months later, only to discover bugs that you never squashed;  Ouroboros ensures deep-
testing while programmers think high level. 

Implementations Testing.  We can expand the pattern to the context of testing 
compatible implementations or servers.  Between a pair of cooperating agents: one end 
will use the wireEncode() to ‘send’ a piece of data across the wire. The receiving end 
uses wireDecode() to collect and then reconstruct the datum at the other end.  It 
immediately encodes it back onto the wire and sends it back to the sender 
which decodes and checks for equality. 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(4) Conclusion 

The goal of network programming is to reliably transport information.  The OOP 
perspective is to reliably transmit an object.  Techniques of class-level encoding and 
decoding have developed over time to enable an object to in effect help itself be 
transported. 

This strategy of endogenous containment --a class laying out its data to a stream and 
also recovering that data stream--should be seen as a dramatic contrast to pre-OOP 
methods.  Vertical stacks of functions struggling to make sense of the flow of data, with 
no real attention to natural composition found within, are replaced with an elegantly self-
contained and recursive tree of classes that nicely track and reinforce the data's natural 
structure.  We use the composition, streaming and other benefits of OOP to make the 
class sovereign in its territory. 

Our novel feature is to expand on OOP’s bounty to add convenient, appropriate and 
manageable testing.  By adding an example() and equals() method to all classes, and 
wrapping these methods into a loopback cycle of example -> encode -> decode -> 
equals, we close the loop on testing:  creating, transmitting, recovering and testing-for-
equality over thousands or millions of random samples gives great comfort that the 
basics are working. 

As this exactly mirrors the primary goal of the network object, our testing job is done. 

Better, the method is self-enforcing through unexpected side-effects:  programmers find 
it easier to build the extra two methods at development time than deal with bugs later 
on.  The test is as efficacious for the individual class author as it is for the project 
builder.  Indeed, because of composition, an Ouroboros test of a high level, large object 
will automatically test all of its component objects, down to the smallest ones.  In this 
way, Ouroboros scales and aligns with maintenance cycles and team boundaries - we 
naturally get more and deeper testing the more sophisticated the data layout becomes.  
It easily leaps across boundaries such as languages and implementations.  The 
supporting code is quite minimal, making porting predictable and mechanical. 

All these benefits lead to comfort on the part of the programmer.  Within the framework, 
it is possible to rapidly prototype new protocol conversations, and get them right in the 
first instance.  This frees the coder from the mundane bit-bashing, and leaves him and 
her thinking of the conversation.  What is the right thing to say, when saying anything is 
easy? 

Future work.  Ouroboros does save time in the end, but how much?  This could be 
quantified by some form of controlled comparison.  Ouroboros also contrasts with 
techniques like Fuzzing, and an easy extension is to use the latter’s malicious injection 
technique.  Is it worthwhile to add a method called mutate() that fuzzes with example() 
and inject that many times?  A last benefit is that because it is so tight in its cycle, it is 
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even helpful if one is not incredibly proficient at programing.  Can Ouroboros find a 
place in a pedagogical environment? 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Layouts.  Other data layouts suffer from the same inappropriate focus as Java - several 
formats where only one would serve the application programmer.  For specific example, 
only one natural number format is generally required (we do not typically need 
negatives or floats). This is primarily a historical artifact; other layouts prefer time-
honoured abstractions from hardware over newer information-friendly abstractions 
possible in OOP.

Types.  As well as a set of canonical primitives, the WireOutputStream adds methods to 
write out typed versions of these primitives, which are simply the primitive prefixed by a 
fixed number (as a CompactInt of course).  For example, a typed ByteArray is a series 
of three elements:  type, length, bytes.  This is similar to the tag-length-value tuple (TLV) 
found in other protocols.

wireEncode(WireInputStream wis) {
...
name = (Name) wis.readFactory( Types.WIRE_NAME );
...

}

wireDecode(WireOutputStream wos) {
...
wos.writeTypedObject(Types.WIRE_NAME, name);
...

}

In our Wire layout, the type is optional.  More specifically, the use of a type is under the 
control of each class, which allows it some flexibility in how it lays out its constituent 
members.  For example, in a factory approach, readers can handle a wide range of 
inputs.

Fuzzing. Example() generates an object similar to generation-based fuzzing; however, 
their approaches are fundamentally different. Fuzzing aims to send bad data into the 
system, in order to crash it -- and thus harden its response against illegal input 
[Fuzzing].  Fuzzing as a technique is typically external to the system being tested, even 
ignorant of it. Ouroboros uses good data to prove it can handle legal cases, and its 
methods are integral, down to the smallest class level, and is fully aware of the protocol. 
While both example() and generation-based fuzzing use random data to test a system, 
Ouroboros shows that good data is positively handled, while fuzzing proves that bad 
data is rejected.  Fuzzing intends to crash a system through stress and injected errors, 
while example() aims to show reliability under non-byzantine conditions. 

Ouroboros could easily be extended to do fuzzing:  a method fuzz() or perhaps mutate() 
could take an object (from example()) and adjust its data out of legal bounds.  This 
could then be cycled through the three later phases to prove the code’s efficacy at 
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rejection.  We have not done this, although slavish attention to our security context 
would suggest we should. 

Cost.  Ouroboros requires the addition of 2 methods to every network packet class.  
This is about as much work as the encode and decode;  therefore the additional work at 
the class level is minimal and bounded.  The supporting code includes: Wire streaming, 
a test harness, random primitives and deep equals methods, amounting to around 2000 
lines of code. 

Frameworks.  It has often been the goal to simplify the black arts into objective, defined 
and hopefully simple frameworks, and network programming rises to that challenge.  
Typically the approach is to create strong and comprehensive definitions at various 
levels, as typified by ASN.1 (binary layouts), XML (human readable layouts), and 
Google’s Protocol Buffers (layouts in code), and to build big framework tools to 
implement these definitions. 

However, each of these popular approaches has resulted in large and overwhelming 
systems, which in the end undermine the original goal.  The success of an abstraction is 
often determined by whether the result is simpler than the original, and few of these 
frameworks meet the incisive test of Einstein’s razor:  everything should be as simple as 
possible, but no simpler.  E.g., they typically impose the programmer burden of, in 
effect, learning another language, and include large packages of non-trivial, specialized 
code.  Instead, direct networking with OOP as described here places the line of 
abstraction inside the existing OO classes;  we get more value from less abstraction. 

Goals; Similarities with Java. 

Although the ouroboros pattern gives a language independent platform, Java shaped 
the character of our project. This section deals with some of the Java specific effects on 
our pattern, as well as language based choices we made along the way. 

Java’s toString() method.  Another serendipitous or secondary addition from Java is 
toString() method.  This is also a required and default method, but it comes to shine in 
debugging of packets. 

Java’s serialization suffers from several shortcomes: language-dependence, version 
dependence, and no control over the data at the byte level.  We choose to use our own 
encode/decode methods and over others such as Java serialization primarily because it 
provides greater security. 

The Ouroboros cycle was developed during the coding of an extensive, secure payment 
system for which Java was predominantly used. This was during the 1990‘s and early 
2000s, in which times Java was less developed.  Combined with a sense of critical 
analysis, this led to a ban on Serialization: the obvious Java alternative to the ouroboros 
cycle. While taking advantage of a language’s particular mode of communicating 

Ada & Iang �15



The Ouroboros Pattern

objects across networks seems logical on the surface, there are several inherent 
drawbacks to serialization for our project context. 
 Firstly, serialization is language dependent, it destroys our ability to have a server 
and client written in different languages, and therefore inextricably locates us into Java. 
It doesn’t stop there.  Serialization is version dependent, so we could be looking at 
potential incompatibility nightmares when e.g., someone slips in a new version of Java.  
(Although not developed in this article, the techniques described herein are also used 
without change for object database storage.) 
 For projects that deal with sensitive information, security is a top concern. We 
want absolute control of what exactly was sent across the wire. This omnipotence in 
information control is better achieved through Ouroboros, in which we are required to 
stipulate exactly what the immutable data is, and write it out to be sent. The fact that 
we’re building the code from the bottom up, instead of borrowing someone else’s (and 
assuming it is secure) gives us an added layer of security where we need it: at the very 
bottom. 
 References based on locations in memory are lost from machine to machine 
(whether virtual or physical), and the ensuing confusion is not advantageous for network 
programming, in which our very goal is to transfer unchanging references. The direct 
OOP techniques do not solve this, rather they force the programmer to deal directly with 
the issue by not hiding it -- some method of transportable references is required. 
 Finally, serialization has inherent difficulty dealing with deep copies, and it is 
better to force the programmer to deal directly with that choice. 

Java’s hashcode() method.  One of our most elusive bugs stemmed from the 
interrelation of contracts between hashcode() and equals().  In short, objects that are 
equal should return hashcodes that are equal, and if this is not followed, certain of the 
Collections classes will behave erratically.  For this reason, (in java) when we override 
Object’s equals() we are required to also override hashcode(). 

Luckily we can code this relatively easily for the general case, and tuck it into an 
abstract class: 

  public int hashCode()
  {

ByteArrayOutputStream baos = new ByteArrayOutputStream();
WireOutputStream wos = new WireOutputStream(baos);
try {

this.wireEncode(wos);
} catch (IOException iox) {

throw new Error("IOEx in wireEncode???: " + iox);
}
byte[] p = baos.toByteArray();
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ByteArrayInputStream bais= new ByteArrayInputStream(p);
CRC32 crc32obj = new CRC32();
return (int) crc32obj.getValue();

  }

RULES, and similar 

1. The primary goal of an object is to transport itself. 
2. Each class describes a component. 
3. Each object is immutable. 
4. Each class has a method encode() to stream its object out, and a method decode() 

to stream itself in.  (The name is not important, these methods are variously called 
marshalling, decoding, streaming, outputting in other approaches.) 

5. Rose’s network security principle applies: we are precise about what we send out 
and we are precise about what we accept in.  (With a nod to Rose [RFC3117], we 
note that this is in contrast to Postel’s robustness principle [RFC1122].) 

6. Therefore, decode() must check entirely and fully for presence, legality and sanity of 
input.  Exceptions are thrown, object is not returned. 

7. Likewise, constructors should blocks illegal objects from existence, and encode 
should decline to output a bad object. 

8. Equality of the object means that the object & data that should be transmitted has 
been transmitted.  Each class has an equals() method that implements this definition. 

9. Each class has an example() that returns an object stuffed with random but legal and 
sane data. 

10. Each class has a toString() method that presents the object’s debugging summary. 
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